Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The emergence of the Spatial Web -- the Web where content is tied to real-world locations has the potential to improve and enable many applications such as augmented reality, navigation, robotics, and more. The Spatial Web is missing a key ingredient that is impeding its growth -- a spatial naming system to resolve real-world locations to names. Today's spatial naming systems are digital maps such as Google and Apple maps. These maps and the location-based services provided on top of these maps are primarily controlled by a few large corporations and mostly cover outdoor public spaces. Emerging classes of applications, such as persistent world-scale augmented reality, require detailed maps of both outdoor and indoor spaces. Existing centralized mapping infrastructures are proving insufficient for such applications because of the scale of cartography efforts required and the privacy of indoor map data.In this paper, we present a case for a federated spatial naming system, or in other words, a federated mapping infrastructure. This enables disparate parties to manage and serve their own maps of physical regions and unlocks scalability of map management, isolation and privacy of maps. Map-related services such as address-to-location mapping, location-based search, and routing needs re-architecting to work on federated maps. We discuss some essential services and practicalities of enabling these services.more » « lessFree, publicly-accessible full text available May 14, 2026
- 
            Wasm is gaining popularity outside the Web as a well-specifed low-level binary format with ISA portability, low memory footprint and polyglot targetability, enabling efficient in- process sandboxing of untrusted code. Despite these advantages, Wasm adoption for new domains is often hindered by the lack of many standard system interfaces which precludes reusability of existing software and slows ecosystem growth. This paper proposes thin kernel interfaces for Wasm, which directly expose OS userspace syscalls without breaking intra- process sandboxing, enabling a new class of virtualization with Wasm as a universal binary format. By virtualizing the bottom layer of userspace, kernel interfaces enable effortless application ISA portability, compiler backend reusability, and armor programs with Wasm’s built-in control flow integrity and arbitrary code execution protection. Furthermore, existing capability-based APIs for Wasm, such as WASI, can be implemented as a Wasm module over kernel interfaces, improving reuse, robustness, and portability through better layering. We present an implementation of this concept for two kernels – Linux and Zephyr – by extending a modern Wasm engine and evaluate our system’s performance on a number of sophisticated applications which can run for the first time on Wasm.more » « lessFree, publicly-accessible full text available March 30, 2026
- 
            Heisenbugs, notorious for their ability to change behavior and elude reproducibility under observation, are among the toughest challenges in debugging programs. They often evade static detection tools, making them especially prevalent in cyber-physical edge systems characterized by complex dynamics and unpredictable interactions with physical environments. Although dynamic detection tools work much better, most still struggle to meet low enough jitter and overhead performance requirements, impeding their adoption. More importantly however, dynamic tools currently lack metrics to determine an observed bug's difficulty or heisen-ness undermining their ability to make any claims regarding their effectiveness against heisenbugs. This paper proposes a methodology for detecting and identifying heisenbugs with low overheads at scale, actualized through the lens of dynamic data-race detection. In particular, we establish the critical impact of execution diversity across both instrumentation density and hardware platforms for detecting heisenbugs; the benefits of which outweigh any reduction in efficiency from limited instrumentation or weaker devices. We develop an experimental WebAssembly-backed dynamic data-race detection framework, Beanstalk, which exploits this diversity to show superior bug detection capability compared to any homogeneous instrumentation strategy on a fixed compute budget. Beanstalk's approach also gains power with scale, making it suitable for low-overhead deployments across numerous compute nodes. Finally, based on a rigorous statistical treatment of bugs observed by Beanstalk, we propose a novel metric, the heisen factor, that similar detectors can utilize to categorize heisenbugs and measure effectiveness. We reflect on our analysis of Beanstalk to provide insight on effective debugging strategies for both in-house and in deployment settings.more » « less
- 
            Virtual Reality (VR) telepresence platforms are being challenged to support live performances, sporting events, and conferences with thousands of users across seamless virtual worlds. Current systems have struggled to meet these demands which has led to high-profile performance events with groups of users isolated in parallel sessions. The core difference in scaling VR environments compared to classic 2D video content delivery comes from the dynamic peer-to-peer spatial dependence on communication. Users have many pair-wise interactions that grow and shrink as they explore spaces. In this paper, we discuss the challenges of VR scaling and present an architecture that supports hundreds of users with spatial audio and video in a single virtual environment. We leverage the property of \textit{spatial locality} with two key optimizations: (1) a Quality of Service (QoS) scheme to prioritize audio and video traffic based on users' locality, and (2) a resource manager that allocates client connections across multiple servers based on user proximity within the virtual world. Through real-world deployments and extensive evaluations under real and simulated environments, we demonstrate the scalability of our platform while showing improved QoS compared with existing approaches.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
